Ramified Deformation Problems

نویسنده

  • BRIAN CONRAD
چکیده

0. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 1. The deformation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 1.1. Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 1.2. Changing the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 2. Some applications of finite Honda systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452 2.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452 2.2. Initial description of ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 2.3. Translation into Honda systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460 2.4. Classification of possible ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 3. Tangent space calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476 3.1. Analysis of a kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476 3.2. Analysis of an image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 4. Deformation rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 4.1. Structure theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 4.2. Another deformation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 5. The ′-ordinary case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 5.1. Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 5.2. Honda system calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 5.3. Classification of possibilities for ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510 5.4. Deformation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Which weakly ramified group actions admit a universal formal deformation?

We determine exactly which formal deformation functors of representations of a finite group as weakly ramified automorphisms of a power series ring over a perfect field of positive characteristic are prorepresentable: only in characteristic two, the weak action of an involution and of the Klein group have non-pro-representable mixedcharacteristic formal deformation functors, and only the first ...

متن کامل

On the Krull Dimension of the Deformation Ring of Curves with Automorphisms

We reduce the study of the Krull dimension d of the deformation ring of the functor of deformations of curves with automorphisms to the study of the tangent space of the deformation functor of a class of matrix representations of the p-part of the decomposition groups at wild ramified points, and we give a method in order to compute d.

متن کامل

Iwasawa invariants of galois deformations

of the absolute Galois group of a number field F . Assume that ρ̄ is ordinary in the sense that the image of any decomposition group at a place v dividing p lies in some Borel subgroup Bv of G. Assume also that ρ̄ satisfies the conditions of [11, Section 7] which guarantee that it has a reasonable deformation theory; see Section 3.1 for details. In this paper we show that the Iwasawa invariants o...

متن کامل

Configuration Spaces for Wildly Ramified Covers

The classification for wildly ramified covers is more mysterious than for tame covers. A natural configuration space — the space of unordered branch points of a cover — for tame covers allows the construction of Hurwitz spaces, and an often very effective theory for families of tame covers. We define invariants generalizing Nielsen classes for Hurwitz families. The result is a configuration spa...

متن کامل

Gauge Theory and Wild Ramification

The gauge theory approach to the geometric Langlands program is extended to the case of wild ramification. The new ingredients that are required, relative to the tamely ramified case, are differential operators with irregular singularities, Stokes phenomena, isomonodromic deformation, and, from a physical point of view, new surface operators associated with higher order singularities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999